
Towards an Integrated GPU Accelerated SoC as a Flight
Computer for Small Satellites

Caleb Adams, Allen Spain, Jackson Parker,
Matthew Hevert, James Roach, and Dr. David Cotten

Overview

● UGA SSRL

● The MOCI Mission

● What we have done

● What we’re doing

● (if time permits) Applications

2

UGA SSRL
● Founded in 2016 by a team of Undergrads

○ How hard could it be?

● Faculty supported

● 2 funded cubesat missions

○ MOCI - AFRL UNP

○ SPOC - NASA USIP

● Advanced topics in remote sensing

● 5 Grad Students

3

The MOCI Mission
● Multiview Onboard

Computational Imager

● 6U cube satellite

● ~450km orbit - ~6m GSD

● Goal is to generate 3D terrain

models in near real-time

● Flying an Nvidia Tegra X2i

GPU SoC

● Funded by AFRL

4

Simulated computations of mountain ranges

Current MOCI optical layout

The MOCI satellite with front panel and UHF
antenna removed

The CORGI Board

● Core GPU Interface Board
● An additional primary OBC is still needed

○ Clyde Space OBC us currently used
■ Contains ARM Cortex M3

● Designed for Cubesats
○ PC/104+ standard

● Compatible with the Nvidia TX2 and TX2
● Standard Procedures: Conformal Coating,

Outgassing, Staking, etc...

5

The Nvidia TX2i mounted onto the UGA SSRL’s CORGI board

6

Nvidia Jetson TX2i
● Pascal GPU - 256 CUDA cores

● ARMv8

○ Nvidia Denver 2 (dual-core)

○ ARM Cortex A57 MPCore Module

(quad-core)

● 8GB LPDDR4 - 28 GB/s peak

memory bandwidth

● 32GB eMMC Flash Memory

● Software enabled ECC

The Nvidia TX2 / TX2i IO and Block Diagram

Minimizing the TX2i OS
● Ubuntu 16.04 LTS based

● Busybox Jetson Root FS

● JHU Dart team has solutions we are

moving to

○ We used to script FS generation

and dependency population

● Hardest parts are

○ maintaining all packages needed

○ maintaining CUDA compatibility

7

CORGI Software & Telem Monitoring

● Connects OBC to TX2i via 500Kb/s TTL UART

○ OBC will act as ‘Master’ initiating all

communications to the TX2i

● API implemented on each side allowing for the OBC

to send commands when needed and receive telemetry

when requested

● Upon detection of anomalous behavior the OBC has

the ability to hard reset the TX2i

8

CORGI Watchdog
● The OBC will use telemetry received from the

TX2i to monitor its state.

○ If communication is lost or commanded

actions take too long OBC will force a hard

reset

● OBC will model the TX2i by implementing a

Finite State Machine that will keep track of the

TX2i state and take corrective action if necessary

9

An older version of the AFC /
CORGI concept

Thermal Analysis
● We assume a lot of bad things here

○ TDP of 15 Watts
○ Realistic load of 7.5 Watts

● We have a TVac chamber we will
kills some boards in

● Boards modeled as FR-4
● Ansys + Simplified Model
● Aluminium 6063-T5
● Carbice Space TIM used

○ Low CVCM and TML
● Goes from 160 C to 50 C with TIM

and mount to frame

10

Ansys Thermal Simulations of the Nvidia TX2i

Lowering Power
● Easiest Way to improve Thermals!

○ For me as a software guy at least

● Shut off cores with $ sudo nvpmodel #

and set modes to minimize power

● decrease clock frequency/self

throttle

● Choice of mode is design decision

● We get between 3 and 7.5 Watts

doing this

11

Mode Name
Denver

2
Hz ARM A57 Hz GPU Hz

0 Max-N 2 2.0 4 2.0 1.3

1 Max-Q 0 - 4 1.2 0.85

2 Max-P Core-All 2 1.4 4 1.4 1.12

3 Max-P ARM 0 - 4 2.0 1.12

4 Max-P Denver 1 2.0 1 2.0 1.12

TX2 / TX2i power modes

Physical Radiation Mitigation

● Dunmore Aerospace Satkit

● SIGNIFICANT future work in this section

○ Working with JHU APL, using facilities at

University of Washington

● Aluminum block around the TX2i

● Cheap LEO/cubesat solutions

12

Aluminized Kapton shielding on a 3U face

AFC - Moving Towards a Flight Computer
● The AFC (Accelerated Flight Computer)

○ Currently a tangled mess of wires in our ESD area

● An upgraded CORGI - (this is outside the scope of MOCI mission)

● We Need to:

○ Develop Radiation Mitigation Techniques

○ Diversify Interfaces

○ Implement Watchdog

○ Add Persistent Memory

○ Improve Thermals

○ Lower The Power Consumption

13

AFC rendering

System Specs
Overview

14

Nvidia Tegra X2i

2x Denver ARM Cortex A57

256 Pascal Arch GPU

8GB LPDDR4

32GB ECC support

SmartFusion2

ARM Cortex M3

ARM Cortex M3 SoC FPGA

4x256 DDR3 Memory Bank

Both

2GB (Cypress CYRS16B256)

1 Gb SPI Flash on SPI 0*

1 Gb SPI Flash on SPI 1*

I/O

PC/104+, I2C, SPI, GPIO

QSPI Expansion Header

2x RJ-45

2x USB type C

Micro USB (FTDI)

Architecture Overview

● SF2 controls TX2i over eth

● Shared NAND flash between SF2

and TX2i

● Power supply through Sat stack

● Eth. is primary communications

for additional Jetson modules

● SD card only for development

15

Integration Overview

● Bidirectional Logic shifters needed

○ convert 1.8v (CMOS) TX2i logic

to 3.3v (LVTTL) SF2

● Shifters required for (onboard) serial

data transfer

● Power discharge circuitry

● USB and SD card interfaces

● More in extra slides

16

AFC electronics in eagle CAD

Bootloader TMR
● Using U-Boot to add custom boot time functionality to the TX2i

○ The principle of TMR safeguards against catastrophic OS corruption

● 3 identical OS images stored in memory, along with hashes of the images

○ Hashes used to determine if an image has been corrupted by radiation

○ Hash stored in triplicate to protect against hash corruption

● If corruption is detected on all 3, bootloader will try to reconstruct a valid image

○ Uses principle of majority voting to determine which parts of the images are

corrupted

○ Relies on unlikeliness of the exact same bit being corrupted on each image

● -

● - 17

Unifying Memory

● Tx2i and Smartfusion 2 both share persistent SPI flash

memory

○ Shifter (MUX) required (controlled by SF2)

○ Added overall system storage

■ Radiation hardened

○ Data can be accessed when coprocessor (TX2i) is

powered off

○ Sharing mutually relevant files

18

FPGA as a Watchdog

● FPGA contains a Finite State Machine

○ updated via regular telemetry from the

system

● Will have the ability to hard or soft reset

the TX2 upon detection of an anomalous

state

● IO is tested against simple checks to

continue

19

PTX overview
● PTX is a low level VM (Virtual Machine)

and ISA (Instruction Set Architecture).

● Compatible with all CUDA capable GPUs

● Written like any other assembly language

● Breaks into CTAs (Cooperative Thread

Arrays) = Thread Blocks

● PTX programs specify the actions of a

given thread in a specific thread array

● CUDA compiles into PTX and can be

used within CUDA kernels

20

Nvidia PTX thread-batching, source: Nvidia

Block PTX checkpointing
● Simple TMR type design

○ Majority Gate

● Follows finite state machine on the

FPGA

● Makes the execution much slower

● Where to place PTX checkpointing is

a design choice on its own

○ Last stages of pipelines ideal

○ B1 and B2 of smaller size

● Writing inline PTX

21

B

0

B

1

B

2

TMR diagram at Block level

Adding Interfaces

● Ethernet - high speed data transfer, enables many devices on the same

network in a peer to peer configuration.

● USB 2.0 (FTDI) - provides debug interface with the SF2

● USB 3.0 (Type C) - Jetson Tx2i command/control interface

○ Low profile

○ Backwards compatibility

○ Good data rate

○ Supports peripheral devices

22

Future Work

● Better PTX checkpointing

● Better PTX GPU memory bank

monitoring

● Multi-Jetson computation

● Radiation Event Correction

● Flight!

23

MOCIQuestions?
smallsat.uga.edu
University of Georgia

MOCIExtra Slides

CORGI BITS

CORGI BITS
Bidirectional Logic Shift

Power switch

CORGI BITS
SD Card Interface

Power Discharge

AFC Design

